209 research outputs found

    Exact results on the quench dynamics of the entanglement entropy in the toric code

    Full text link
    We study quantum quenches in the two-dimensional Kitaev toric code model and compute exactly the time-dependent entanglement entropy of the non-equilibrium wave-function evolving from a paramagnetic initial state with the toric code Hamiltonian. We find that the area law survives at all times. Adding disorder to the toric code couplings makes the entanglement entropy per unit boundary length saturate to disorder-independent values at long times and in the thermodynamic limit. There are order-one corrections to the area law from the corners in the subsystem boundary but the topological entropy remains zero at all times. We argue that breaking the integrability with a small magnetic field could change the area law to a volume scaling as expected of thermalized states but is not sufficient for forming topological entanglement due to the presence of an excess energy and a finite density of defects.Comment: 14 pages, 7 figures, published versio

    Optimal control for unitary preparation of many-body states: application to Luttinger liquids

    Full text link
    Many-body ground states can be prepared via unitary evolution in cold atomic systems. Given the initial state and a fixed time for the evolution, how close can we get to a desired ground state if we can tune the Hamiltonian in time? Here we study this optimal control problem focusing on Luttinger liquids with tunable interactions. We show that the optimal protocol can be obtained by simulated annealing. We find that the optimal interaction strength of the Luttinger liquid can have a nonmonotonic time dependence. Moreover, the system exhibits a marked transition when the ratio Ï„/L\tau/L of the preparation time to the system size exceeds a critical value. In this regime, the optimal protocols can prepare the states with almost perfect accuracy. The optimal protocols are robust against dynamical noise.Comment: 4 pages, 4 figures, extended results on robustness, to appear in PR

    Renyi entropies as a measure of the complexity of counting problems

    Full text link
    Counting problems such as determining how many bit strings satisfy a given Boolean logic formula are notoriously hard. In many cases, even getting an approximate count is difficult. Here we propose that entanglement, a common concept in quantum information theory, may serve as a telltale of the difficulty of counting exactly or approximately. We quantify entanglement by using Renyi entropies S(q), which we define by bipartitioning the logic variables of a generic satisfiability problem. We conjecture that S(q\rightarrow 0) provides information about the difficulty of counting solutions exactly, while S(q>0) indicates the possibility of doing an efficient approximate counting. We test this conjecture by employing a matrix computing scheme to numerically solve #2SAT problems for a large number of uniformly distributed instances. We find that all Renyi entropies scale linearly with the number of variables in the case of the #2SAT problem; this is consistent with the fact that neither exact nor approximate efficient algorithms are known for this problem. However, for the negated (disjunctive) form of the problem, S(q\rightarrow 0) scales linearly while S(q>0) tends to zero when the number of variables is large. These results are consistent with the existence of fully polynomial-time randomized approximate algorithms for counting solutions of disjunctive normal forms and suggests that efficient algorithms for the conjunctive normal form may not exist.Comment: 13 pages, 4 figure

    Virtual Parallel Computing and a Search Algorithm using Matrix Product States

    Full text link
    We propose a form of parallel computing on classical computers that is based on matrix product states. The virtual parallelization is accomplished by representing bits with matrices and by evolving these matrices from an initial product state that encodes multiple inputs. Matrix evolution follows from the sequential application of gates, as in a logical circuit. The action by classical probabilistic one-bit and deterministic two-bit gates such as NAND are implemented in terms of matrix operations and, as opposed to quantum computing, it is possible to copy bits. We present a way to explore this method of computation to solve search problems and count the number of solutions. We argue that if the classical computational cost of testing solutions (witnesses) requires less than O(n2)O(n^2) local two-bit gates acting on nn bits, the search problem can be fully solved in subexponential time. Therefore, for this restricted type of search problem, the virtual parallelization scheme is faster than Grover's quantum algorithmComment: 4 pages, 1 figure (published version
    • …
    corecore